PHYSICAL REVIEW B VOLUME 2, NUMBER 6 15 SEPTEMBER 1970

Transport Coefficients Based on Magneto Translationally Invariant Wave Functions*

Harold L. Grubin® and T. Kjeldaas, Jr.
Polytechnic Institute of Brooklyn, Brooklyn, New York 11201
(Received 5 November 1968; revised manuscript received 27 January 1970)

A general theory of quantum magnetotransport effects for conduction electrons, with em-
phasis on the consequences of Harper broadening, yields new expressions for a magnetic-
field-dependent effective mass and finite-wavelength conductivity coefficients. An examina-
tion of the conductivity coefficient relevant to magneto acoustic Doppler-shifted cyclotron
resonance experiments reveals the presence of peaks inthe sound-wave attenuation coeffi-
cient beyond the absorption edge. The analysis includes the use of density-matrix tech-
niques with a representation that is simultaneously an eigenfunction of the Bloch Hamilto-

nian (for an electron in a uniform magnetic field) and the magnetic translation operators.
The eigenfunctions, eigenvalues, and conductivity coefficients are studied for an ortho-
rhombic system and then specialized to the case when the crystalline potential has the form

Vix, v, 2) =V(x,y) +V(z) (the magnetic field is along z).

Contributions due to Harper broad-

ening are isolated. Estimates of the magnetic-field dependence of the conductivity coeffi-

cients are presented.

I. INTRODUCTION

In 1955 Harper! pointed out a significant omission
in the semiclassical treatment of conduction elec-
trons in uniform magnetic fields. Thiswasthe peri-
odic potential broadening of the quantized-oscillator
levels. Since then the consequences of potential-
broadened levels has been studied by Pippard? and
others® who have examined the relation between this
effect and magnetic-breakdown phenomena.* How-
ever, general treatments of quantum magnetotrans-
port effects incorporating potential broadening in a
natural way have not appeared. The main difficulty,
perhaps, was in the selection of representations
that adequately described the basic symmetry of the
problem. For the case of zero magnetic field,
Bloch functions provide a natural basis. For finite
magnetic fields and zero periodic potential, Landau
functions are appropriate. For finite magnetic
fields and finite crystalline potential, the represen-
tation of Harper and more recently those of Zak® and
Brown® describe in a natural way the invariance
properties of the crystal.” The important feature of
these latter representations is the notion of crys-
talline energy bands in the presence of uniform
fields, these bands being a direct consequence of
translational symmetry of the crystal in uniform
magnetic fields.

In this paper a general treatment of quantum mag-
netotransport effects for electrons in crystalline
solids is presented using a representation similar
to those of Harper, Zak, and Brown. The conse-
quences of the broadened levels for electrons sub-
ject to space- and time-dependent fields is examined.
Examples from magnetoacoustics are used to il-
lustrate principal new effects. Among the results,

2

a particularly interesting one occurs for a shear
wave propagating parallel to the magnetic field.

Here we demonstrate the presence of peaks® in the
sound-wave attenuation coefficient beyond the absorp-
tion edge® with amplitudes related to the width of

the broadened levels.

To formulate the problem, density-matrix tech-
niques areused. These techniques are patterned after
the work of Tosima, Quinn, and Lampert.!® While
the results are superficially similar in form to the
free-electron calculation of Tosima et al., they are
exact and sufficiently general to yield results due to
the effects of broadened levels, as well as those due
to ordinary magnetic-field-dependent phenomena.
The basis functions for the purpose are simulta-
neous eigenfunctions of the Hamiltonian

3= (1/2m)B - eKy/cf + V(F)
and the magnetic translation operators (MTO)

7(R,) = expil @+ eAy/c) R, /7]

(1.1)

1.2)

for a particle in a uniform field B of charge e, mass
m, and crystalline potential V(F)= V(f+R,). Here
R, is a lattice vector and Ay= B X¥, The eigen-
functions and eigenvalues of the Hamiltonian are de-
noted, respectively, by #(¥;#ko) and €(n, %) and in-
terpretation is in terms of a band picture. »denotes
the band index and k the wave vector. The proper-
ties of the eigenfunctions and eigenvalues of the
above equations as well as those of relevant matrix
elements are discussed in Sec. II. !

In Sec. III, we construct single-particle density-
matrix elements for conduction electrons in uni-
form magnetic, and space- and time-dependent
electric fields. In Sec. IV magnetic-field-depen-
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dent, frequency-dependent, and wavelength-depen-
dent conductivity coefficients are obtained from
Fourier -transformed ensemble-averaged current
and charge densities.

A model potential of the form V(¥)=V(x,v)+ V(z)
is used to isolate contributions to the conductivity
due to potential-broadened levels. The conse-
quences of this model, for the wave functions and
matrix elements, are discussed in Sec. V. In
Sec. VI we examine the case of transverse conduc-
tivity for wave propagation parallel to B. This
geometry is important to helicon propagation and
Doppler -shifted cyclotron resonance. ® New ex-
pressions for a broadened-level magnetic-field-
dependent effective mass and a finite-wavelength
conductivity appropriate to transverse magneto-
acoustic are obtained. These expressions are
shown to oscillate as a function of 1/B where B
=IBIl. The magnitudes of these quantities are
discussed in Sec. VII.

II. EIGENFUNCTIONS AND EIGENVALUES

The important feature of the wave functions used
here is their translational invariance. This in-
variance property arises because the wave functions
are required to be simultaneous eigenfunctions of
a commuting set of MTO. In general, the opera-
tors T(ﬁn) are noncommutative, but restricting the
quantum of flux through a unit cell to be a rational
multiple of 27 yields a commuting subset of
MTO.% ¢ Although the details of the investigation
are simplified by this restriction, the results are
very general and apparently independent of the
rationality assumption. We express this condition
in the following way:

B=eB/fic = (2ns/N) - @5/4) , (2.1)
where s/N is a rational number and A= (&, x3,)-4;.
We take N even, 3#,,3,, and &, are primitive lattice
vectors. For B satisfying Eq. (2.1), commuting
subsets can be constructed., The subset we chose
to work with has a typical element 7(n,3,+7,Na,
+nz3,). Here n,,n,, and n, are integers. One fur-
ther restriction is imposed. We require all func-
tions of interest to satisfy magnetic periodic bound-
ary conditions®

T E)FE)=fF), i=1,2,3 (2.2)

where N;a; is a macroscopic length.

To determine the general properties of the wave
functions, irreducible representations of the MTO
are constructed. The wave functions are then re-
quired to span the representation matrices and we
find that

TR, nko) =27 Ty B, W(F nika’),  (2.3)

where I‘,T‘,,o (ﬁ,,) are the matrix elements. For an
orthorhombic system (see Appendix A), we have

%, ([R,) = expli[K+ (0s/ MK, ]. (] &, +Ry)}
x exp[i(s/47N)(K* R,)(K,'R,))

X exp [iK, as(0 +n5 = 0" )]0, gun(modulo N),

(2.4)
where
K=k Ro+KyTo+ks 2o T <k
= 0 0 o - SK
¥ v £ ¢ Nal ¥ Na ’
—_— <K < — LB
- _ Ko< ——
Naz =Y Naz, as —~ Z as ’
-> .
ai=[ai|, i=1, 2, 3.

o and o’ vary from 0 to N-1. K,;=#,xd,/A and
cyclic permutations,

-
RN—”—'nlNEI +7’L2N§2+7’l3§3 .

The primes on the integers », and #, indicate that
they are restricted to values less than N. The term
modulo N means that whenever n; +o >N, the Kron-
ecker delta becomes 60,,0“,2, N

Several interesting properties of the wave func-
tions are available. First, wave functions satis-
fying Eq. (2.3) may be written in Bloch-like form:

U(F ; nko) = (expli [X + (0s/N)K,] - F]) W(F; nko),
(2.5)
where

7(2;) W (T ; nko) = T(N2p) W(T ; nko)

=7 (&) W(T ; nko) =W(T¥; nio).
(2.6)

Second, the eigenvalues of 3¢,, €(n, k) are independ-
ent of 0. This result which is demonstrated in Ap-
pendix B indicates that each level is N-fold degen-
erate. A formal prescription for finding the eigen-
values is outlined in Appendix C.

From Eq. (2.1) we see that small changes in B
result in discontinuous changes in the degeneracy
of a system. However, the degeneracy is not an ob-
serable, and an examination of the density of states
for fields restricted by Eq. (2.1) shows that small
changes in B produce continuous changes in the den-
sity of states. %12

Another feature of electron states having the pro-
perties expressed by Eqs. (2.5) and (2. 6) is that the
expectation value of the velocity operator equals

1 %€ >
7ot 0

More generally, as first indicated by Harper, the
matrix element of the velocity operator dt/df is'?
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- AT oy 10e , .
<n’f<’o’ Ty n:(0> =0K'Kk00’ 0 <5"'"}} P (n, k)

—-}1; [en'7)-€n, ) |R2" 1, z)>,

2.7
where
o e [ e 70) e g (F o
R(n n,lc)—NA /A'dr'W(r,n KO)ak»’W(I‘,nKO).
(2.8)
1

Another important result is the sum rule®s 2

m 9% - -
e s, -3 (o

7% Bk,0K
¢ i n' #n

-
+\ nKO

i

dx
dit

which will be used in the definition of a magnetic-
field-dependent effective mass. Both Egs. (2.7)
and (2.9) will be used in interpreting the result of
the transport calculations. We consider next a
prescription for obtaining the magnetic-field-de-
pendent transport coefficients.

III. DENSITY MATRIX

We consider a collection of N, independent elec-
trons in the periodicity domain subject to the Ham-
iltonian

50y =3€,+3C, +3C, (3.1)
with
-—€ *_EZ\Q Y
gcl”zmc [(p c > AI(F,t)
% - _ehy
+ AT D\~ . +edy(r1t). (3.2)

JC, describes the interaction of the electrons with
the space- and time-dependent perturbations rep-
resented, }“_espectively, by the vector and scalar
potentials A,(T,¢) and ¢,(¥,¢). 3, denotes the
electron interactions with thermal phonons, im-
purity scattering centers, etc.

The magnetotransport effects for electrons in
the above environment are obtained by examining
the ensemble-averaged current and charge densi-
ties for a single representative electron at position
T, and time /. The current and charge densities
are, respectively, '

n"f?o> <n’§a
n’EU> <n'§c

ax;

L. GRUBIN AND T. KJELDAAS, JR. 2

Q denotes the volume of the periodicity domain and
A’ is the volume of a primitive magnetic unit cell
(8;XN3,) 35 The symbol (| |) denotes matrix in-
tegration over the periodicity domain. The form of
the matrix element of the velocity operator is the
same as for Bloch functions. The significant fea-
ture of this result as it applies to magnetic field
problems is that the diagonal-matrix element for
motion normal to the magnetic field is not zero.
This result is a consequence of the broadening of
the oscillator levels. In the free-electron case,
only the off-diagonal elements are nonzero.

ax;
dt

-
nK O'>

m}) X[ebe, ) —eln’, B2 (2.9)

j'.(‘fe,t) :%e Z' Puu'(t)<V'| -‘.’6(;_;6) '*'5(-f _Fe)-‘;1 V) 3
(3.3)

n(Fy,1)=e X po O [0F ~F,)[v) (3.4)

with V=m= (p - eAy/e —ehy/c). pu(t) is an ele-
ment of the density matrix, and v denotes the
labeling of a magnetic eigenstate. The evaluation
of the density matrix is carried out next. The
elements of the density matrix satisfy the equation
of motion:

. d "
in Ei?p””'(t):z (V{JCT‘U 0y, ()
!

T om0 e v) . (3.5)

Equation (3.5) is simplified by treating the opera-
tor ¥, by its effect of relaxing the density matrix
to its instantaneous thermal equilibrium13 value

F_)vu' (t):

<m§t re) —€(1/)> powr (1)

;«vl:fcli V! pyrege () = Purs (£) (v | 3C, | v")

2 (s O =B 1)), (3.6)
v
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where 7,,, is a relaxation time. For Fermi statis-

tics
Euu' (t) = ('é' Ne)-l

x (v |{1 +exp[ (50, +3¢, = po = uy(F, D/RTI[v"),
(3.7)

Here u, is the Fermi energy in the absence of the
perturbations and u, (¥, #) is the change in the Fer-
mi energy due to the perturbations; (%, t) is un-
known, k& is Boltzmann’s constant, and T is the ab-
solute temperature

Equation (3. 8) contains two unknowns, p,,.(¢) and
P, (). Another equation is needed. Itis provided
by the constraint that the ensemble-averaged time
rate of change of particle density at (f,, ¢) due to
collisions is zero.!* This is given by the equation

Z’: <V,l 5(5_?3”1/) (pvu'(t) -ﬁw' (t))/Tvv’ =0. (3 8)

Equation (3. 8) will be used later in the evaluation
of u,(¥, ). Of immediate interest is Eq. (3.86),
which we linearize. We first write
Py (t) = pgéw' +pxlau'(t) ’
(3.9)
ﬁw' (t) :pgéw' + 511}’ (t) ’

where ¢®! is a convergence factor, we find that

Py = PY )

pbuc(t) = eat €(VI) - €(y) [(1 B G(V’)

i w*

¥ (1 e =<

i _py —p)

—e(v)+liw+ili /T

w @, w0 )] et H et
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where!?

p2= (_é_ Ne)'l[l +e(e(u)-u.a)/kT]-l , (3. 10)

0
T(Bj/'T-%(v—)K”’:‘cl""> (o] @, D7) .

The linearized equation of motion is then
d 1
175(—“ +,—r> P +[€(V) - €(W)] pyr

i pY - p}

= (pﬂ:-p,‘i)(vlC‘CJv') +5 () —eW)

x (v|3e, - w,F, )| v") . (3.11)

Equation (3.11) is solved subject to pl,(¢=—)=0
with 3¢, slowly turned on. We have also taken the
relaxation time to be independent of v and v’.

For real potentials equal to

Kl(f; 1) = e*[A,@, w)eua- F-wt)
+K1(_a, - w)e-i(ﬁ' i wt)] ’
. (3.12)
¢>1(f‘7 t) = eat[¢1({l, w)el(q sFeat)

+¢1(_ a, _w)e-i(i-i‘ -wt)]’

)(vml(ﬁ, w)|v'yeiet

Tt e()-€)

where

— . — ’ .
wW=w+1¢, W =w +Iid

56, (2§, £0) = - —‘C?V’(ia)-xl(ia,w)w(p,(ia,ilo)e*ia

In the above we have Fourier analyzed u,(T,t). We
are now able to examine the current and chage den-
sities.

e(W)-ew)+w+ili/T

-
T

“1(‘q’, - u)')<y| e—ia"'i' I V’> eiw:t> .
+§,, () —ew) -hw*+ili/T , (8.13)

, (3.14)

(3.15)

IV. CURRENT AND CHARGE DENSITIES

The ensemble-averaged current and charge den-
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sities are given by Eqs. (3.3) and (3.4). We sep-
arate each equation into a part that is explicitly a
time-independent part and a time-dependent part.
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Using Eq. (3.13) and retaining terms linear in the
fields, we obtain

Both parts are Fourier analyzed. The Fourier . : o E@G, )
transform of the explicitly time-independent part of i (@, w)= [— [T+ T1(d,@)] —=—
o . meQ in/c
the current density is zero; for the charge density,
it is (¢/9)5d,0. For the time-dependent parts, de- -
noted by j,(¥,, #) and n,(%,, t), we write n %_- ¢, ») (¢1(§, w)——ﬁel(a, w))J ,
[il(ﬁz; l);nl(Fe: t) = ectt ; [il(qy ,'));nl(a’ /‘))] (4’ 3)
q,w
2 -
i@ Fp-wt) - e =+ _\ E(d,w)
X e € +c.c., 4.1 = - ). —22 7
( ) nl(q’{ chQ [ K(q, ‘)) t@/c
where q is restricted to the first Brillouin zone and -
i
+ *V(q, )<¢1(q,(U) ——l(q’ (U)>J
(1:@, »);n, (@, @)= 2mQ)" [ at [d*F,e
. - (4.4)
X [jl(-fe) t);nl(Fey t )] 9_1“.1‘2-‘”)'
4.2) where T is the unit dyadic and
J
T@E,5)=m Z (1- ; he @V @ V@) v (4.5)
’ ( ')—6( I\ T €W =€)+ 1w+ in/T ’ .
GG v = Ov _ 7w ! - idef e ’
K(G, %)= me Z,e(v') € <1‘ ewN-ew)+ h‘@+z’h/7> wle V@l (4.6)
: 0% —p? [(wle® F1phy |2
74, 7)=me* Z.e(u)—e(u) eWw)—eW)+ nm+in/t ’ (4.7)
and
) K(-d,0)-[1T+1(, )] dc/m 4.8)

€@ )= i+ il)T

In the above equation

E(g, w) .G,

@/c) ~
In arriving at these equations we have used the
selection rule 63 which is valid even though the
restriction on § allows any two vectors to differ by
a vector of type X =n,K,/N+n,K,/N + nyKy. 12

To completely determine the current and charge

densities we Fourier analyze Eq. (3.8). We obtain

©) =3 = ¢(, ).

d)l(q“’ 'u)—“ (C.l w)
e
_[R*(-q,0)-K@,»)]- E, »)/(iB/c)
- K(d,w) dc/@+ hvy(q, ) " 9‘)

By examining Egs. (4.3), (4.4), and (4.9) we see
that the theory is gauge invariant. It is also demon-
strable that these equations satisfy the equation of

[

continuity.
A general expression for the current density

j;@, w) is now available:

J’l(ﬁ,w)=(e2/z‘mmn)( [T+T@, »)]

(zh/‘r)C(q,'u)[ *-§,0)-K@,3)]\ ==
K(d w) - de/w+ hwy(@, o) )-E(QE:J)IO.)

We note that
ny(§, w)=4-3,d, »)/®

To isolate the effects of potential broadening on
the current, we evaluate Eq. (4.10) for a simplified
model of the crystalline potential, where V(x,y, z)
= V(x,y)+ V(z). The magnetic field is along the
z axis.
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V. MODEL

We write the Hamiltonian for the model potential
as
N 1 B P ¥ S, LS W
5 2 v i )
(5.1)

or

:}(:0:360(5)+:}Co(2) ) (5a 2)

where p is a position vector in the x-y plane. The
eigenfunctions and energy eigenvalues are separable
into

»(p;ni,0m(z;jk,)
and

e(nj,?)=€(n,:?,,)+ e(d, k)

respectively, with the property

3o (D) B;nk, 0) = €(n, &,)P(5;nK,0) (5.3)
3o(2m(z;jk,) = € (4, k n(z; k) (5.4)
where
Ky= ok + VoKy -
For

V(x,v)= V(- x,v)= V(x, - y)
and
V(z)=V(-2) ,
€, Ky k)= €y = Kyy k) = €, Ky, = Ky)
and
€(G,k)=€(j, —k,) .

We note that the index » is now associated only with
motion in the x-v plane. In the limit of zero peri-
odic potential, €(n;%,) is independent of ¥, and
equal to (n+ Ln2b/m, the energy of a Landau level
(= 1bl).

The matrix elements of the velocity operator for
the separated potential are obtained by separating
the integration over the x-vy plane from that along
the z axis. The former is denoted by curly brack-
ets, the latter by round ones:
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.- - d
nj KO’> = {n Ko’

1.1%7 1 d5 a - W1 .
<"7 K'o'| o7 73 nKDO}(J ksl dKe)

1 9 -
=0y4,k007,00; ’,i{}; 'ﬁ: €(n;5,)8,n (5.5)

L AR A

dz

nl-l’?lol d
J dat

1 9 .
= 5K',K50',05n',,,{'7;‘ — (36,00, 4

non> ={n't)0" | nic,0} <j k1| % |sz>

oK,

1, ,. )
Lz 60
where
ﬁn,"(fp):N}yzj dxf dy
& s,
- ey D . .
x w(p;nK,0) = w(F;nk,0) ,  (5.7)
Bxp
9
Zj,j(K,)=N3I dzU*(z;j 'k.) w(z;jk,)
53 aKz
(5.8)

and
w(3,nic,0)=e " (5, nkK,0);
U(z,jk,) = e e n(z;jK,) .

R,,(K,) has components X,., and Y., in the x and
y directions, respectively.

VI. TRANSPORT COEFFICIENTS

With the above simplification we examine the cur-
rent density for shear-wave propagation parallel
to the magnetic field. The wave vector q is paral-
lel to B; 4=(0,0, g,). This orientation is appropri-
ate to the case of Doppler-shifted cyclotron reso-
nance, as well as helicon propagation. Although
the interest is in effects due to broadened levels,
the analysis is applicable to the zero periodic po-
tential limit, where the free-electron results are
recovered. Effects due to umklapp processes are
not included.

We consider Eq. (4.10).
gation

For transverse propa-
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Kx(qm (*—J): Ky(qz’ w)=0.

Because of the symmetry of dx/dt and dy/dt the
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components Izy(qz: w) Ixz(qz’ {-‘)), Iyz(q.v ) Iyz(qz, @)
are zero. We examine I,,(q,, @) and I,,(¢q,,®). For
I.(q,, ®) (hereafter, we take w=w)

0 0
Pritg-g = Pnjz fiw
R ey f I
e "-7'§KU 6(],’ Ke _qz) - 5(]’ Kz) €(],; Ke— qz) -=€(J,Kz)+h’w+zﬁ/‘r
X /nK 0 x| i o 21 (', = q] x| 2+ m > pg'f"&;""fr?j?
at ’ THem el T nyn’ £n3ij’ ko e(n{j',x—q)—e(n],;c)

x(1 fw
Ten'j’, k- Q) — €(nj, k) + hw + /T

The first term in Eq. (6. 1) contains elements for
n'=n, the second term for n’#x. In the limit of
zero periodic potential the first term of Eq. (6. 1)

is zero and the second reduces to Eq. (25) of Ref.
10 (with minor notational differences). In this limit
the first term is zero because the expectation value
of dx/dt is zero. For a finite periodic potential
this term is not necessarily zero. I,(q,, w) is first
examined in the limit of zero ¢,.

In the limit as ¢, approaches zero, I.(q,, w) is
expressed as a power series in ¢, with the first
nonzero-g,-dependent term being quadratic in ¢,.
The g,~independent term contributes to the xx com-
ponent of the conductivity tensor, an amount equal
to
(1+1,(q,, w))

mws

0, (W) = ie®lim
q,~0

2
4 .
+57 (L=iwr) E pgﬁz Xyt Xy

njko n'#n

x[(e(n, &,) = €(n’, K,) + Hw + in/T)™t

- Tw =it/ 7))
(6.2)

The significant result here is the first term. This
J

+(e(n, k,) —e(n’, &,)

Consider
(i} 0
On' %8~ Pnj

nyn'#n3d, 4 ke €(7l{7, K a) e("] K)

fiw

Ixy(CIz: w)=m

, dax
{nmﬁ

X(1 - ==
(1 em’i' K-q)-elj, )+ hiw+in/T

?1 (ke = qa | k|2 6.1)

n'/?,,o}
[

term is zero for zero periodic potential and finite
for finite potential. It describes the response of a
particle of mass

M-l %‘Z prux _T (n’ (6' 3)

to an rf field of frequency w. The finite value of
M. arises strictly from the infinite width of the
magnetic band. Free-electron Landau levels are
infinitesimally small and lead to an infinite mag-
netic-field-dependent effective mass. If the period-
ic potential serves only to broaden the Landau level
while still maintaining the integrity of each Landau
energy level, then the major contribution to M,,
occurs when a broadened level crosses the Fermi
surface. For this case, oscillations of M,, that
are periodic in B™ occur. An estimate of this ef-
fect is made in Sec. VIL

The second part of Eq. (6.2) can be interpreted
with semiclassical concepts. This term indicates
a true resonance for

e(n', k,) — €(n, &,) = £ hiw.

When this condition is satisfied a series of peaks in
the conductivity occur. In the zero potential limit
where only adjacent Landau levels are coupled, one
peak occurs. For zero potential and the classical
limit, o, (w) reduces to

(w)_ €T 1-iwT
%xx =i [1 +(7*0°/m® - %) T° —Ziwr:l (6.4)
‘(j"z’j”(z’qz)lz
dx| « |} - |a -
){n KoO| o7 nxpo}{nicpo ‘—i% n'fc,,o'}. (6.5)
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We first examine I,y(q,, w) in the limit of zero g,. In this limit the g,-independent term contributes an

amount to the xy component of the conductivity

0,y(w) = i€ lirré [1+1,0q,, w)/mog,
-

4

equal to

O, (w) = -
(@) mQiw\ 7 5

2
-e mw .
(~— 2 Prsw 2 Xopt X = Yot Voon _ 9 (1 _ 17
n T

Xt Yo Y, X,
0 nn_no + = —fn. - 6.6
) njzko D"jkné:n €(n, Ep)—ETn_,'Kp)*‘h‘“m/T €(n, &,) - €(n’, &,) = iw = ilt/7 ) ©.9
I
Here because of the assumed symmetry of the crys-  and is identified as a magnetization current. This

talline potential no term can be identified as the xy
component of a magnetic-field-dependent effective
mass. o0,,(w) yields results that are semiclassical
in compostion, In the classical limit we get

_éfr rbT/m
970 1+ B0/ mE - ) 72 = 2iwT

(6.7)

We next consider the conductivity for finite ¢, .
We separate the current density j,(g,, w) into two
parts, one without and one with frequency-depen-
dent coefficients. The part with frequency-indepen-
dent coefficients is

mesy [T+‘I-.(qzy 0)] * (Kl(qu w)

+3Z ¢ilg,, @), (6. 8)

n, K

can be seen by choosing the gauge ¢,(q,, w)=0 and
going to the limit w=0, where there is no electric
field. In Eq.(6.8) T (g,,0) is obtained from T (g, )
by setting w=0. .

The frequency-dependent part of j (g, w) is de-
noted by j’(q,, w), where

'].’,(q“ w)E ?I((In w): E(qzy w) (6- 9)

We examine G7(q,, w), treating the electrons as free
along the z axis. To describe the motion in the z
direction, we combine the band index j and the wave
number k, into the wave number %, which varies
from minus to plus infinity. From Egs. (6.1) and
(6.5), and the definition of 5 '(q,, w), we find that

, 1 K,) [ T -
oxx(q,,w)z—b— 7 Z pgzpk —(’z——L[1+lT<"f;f' k —w)]’

z Ky

0. 0
On Kokg=ag = Pritpke

| {nk,0 | dx/dt mk 0} |°
.4 °A

+
m|\>
=t
™

Il mon # ik ok, (€', %, by —q,) —€(n, Ky k)] (€, Kpy ko= q) — €, Ky R,) + Fiw + 80/ 7]

=04,(q,, @) +0%(q,, @),

and

0 0
e?n pn’ipkz - qnpm?,,kz

{n'k0|dx/dt| nk 0} {nk 0 |dy/dt| 'R0}

(6.10)

! = - - - - .
Col0e @)=, €O T k= 0 — €y k) €01 R e 0.) - €00,R )+ + T

ol.(q,, w) and 0%(q,, w) denote, respectively, the
contributions from the first and second part of Eq.
(6.10). The important result here is the term ol,
(g, w). The other terms are interpretable in terms
of semiclassical concepts. The form of o, is the
same as the zero magnetic field conductivity of a
particle in an electric field of frequency w and
wave vector ¢,.'° Contributions to this term arise

(6.11)

I
because of the finite width of the broadened magnetic
band. The analysis of this case is similar to that
for the magnetic-field-dependent effective mass

[Eq. (6.3)]. For the situation when the potential
broadens the Landau levels, oscillations periodic

in B! occur. For magnetoacoustics, simplifica-
tions arise when the condition g, A > 1 is satisfied.
A is the electron mean free path. In this case the
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significant contribution to ol(qz, w) comes from that
region of the Fermi surface where k,~0 and when
the Fermi surface lies within a broadened level.
For this case information about the widths of iso-
lated broadened bands is available. The details of
this effect and a numerical estimate are given in

Sec. VII.
Equations (6.10) and (6. 11) can be placed into a
simple form when the periodic potential possesses

fourfold symmetry:
§*(gz,w) = (e21/mQ) G*(q,, w)E*(q,, )
+03,(q.w) EXg, ) (6.12)
with

[5*(ges 0); E*(g,, )]

= [jx,(qz) /"’) iij;(qm Q)),‘ Ex(qz; ’v) + iEy(Qz’ IU)] )
(6.13)

oxzx(qu w) :Fiox;(qz: /‘))
T/ mS

In the limit of zero periodic potential G*(g,, w) re-
duces to®

G*(q,, w)= (6.14)

't dt (1-£%)
* (4 =Q
Gz, @) ‘3_/; 1+it(qug £ ib/m - w)
(6.15)

where £ is a dimensionless variable and vy is the
velocity of an electron at the Fermi surface. Equa-
tion (6.15) is obtained by neglecting effects assoc-
iated with the discrete nature of the eigenvalue
spectra and leads to the absorption edge associated
with Doppler-shifted cyclotron resonance.

VII. NUMERICAL ESTIMATE

In this section we estimate M,, and 0. (q,, w). We
treat the electrons as free along the z axis and as-
sume the periodic potential has fourfold symmetry
about this axis. We let V(x,v)= V(x)+ V(v) and re-
gard the potential as a perturbation on the empty-
lattice eigenstates. These states are described by
simultaneous eigenfunctions of the MTO and 3, in
the limit of zero crystalline potential. We also set
the integers s/N to 1/N [see Eq. (2.1)]. The empty-
lattice eigenfunctions for this case are

+ 00
¢(I?,n’?pkso):eikx’eibx:v/2 Z g-imNaxy

m==co

Xei(xx+21ru/Na+21rm/a)xvﬂ (KM + Y+ mNa) ,
b
(7.1)

with

Nabl/z 1/2

o) = (sz)'”z(W- e (h1/%) . (7.2)
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H, is a Hermite polynomial'® of order n. 7 is the
Landau level quantum number and is either a posi-
tive integer or zero. (A more general empty-lat-
tice eigenfunction is used in Appendix A.) Using
perturbation theory, we examine the situation when
the width of the broadened level is less than the
Landau level separation. To first order the energy
of a broadened Landau level is
212
€Oy, )= L0 (o Lk

+ V,(cosk,Na+cosk,Na) ,  (7.3)

where

Vo=V, [ dEo,[b73(E+ Nab )], (07V%) |, (7.4)

¢ is a dimensionless variable, and ¥ is the first
Fourier coefficient in the Fourier expansion of the
periodic potential. In terms of €(n, &,, k,), we write
M, [(Eq. (6.3)] as

1/Mxx=2n 1/M;lx ) (7 5)
with
1 -2N (Na)? /
= ~—5—V, 2.' cosk,Na , (7.6)
M:x N, & nipkz

where the prime denotes summation over occupied
states. In Fig. 1 we sketch Ml as a function of B!
for the case when only the first few broadened
levels contribute.

To interpret Fig. 1, we examine Fig. 2. From
Fig. 2 we see that there are values of &,, %, for
example, chosen such that for all «, and «,,
€, k,, k,) <ity (1o is the Fermi energy). For k=
all states below p, are fully occupied and a sum
over k, and «k, yields a zero result. For other
values of &,, k,, for example, chosen so that there
are values of k, and k, for which €, &, k,)= yu,, the
nth level is partially filled and a sum over «, and
Kk, yields a nonzero result. Thus, contributions to
Eq. (7.6) came only from partially filled bands.

To estimate this result, we change the sum in Eq.
(7.6) to an integral letting
2. ~(Q/87°) [ d,dk,dk, .

Kok,

(7.7

z
Integrating over %,, the sum in Eq. (7.6) becomes

_ i (zm)llz
8m 7 "

dexxdxycosxxNa(cos;c,,NaJr cosk,Na)
[po = G+ D220/ m ]2

(7.8)

This expression is valid for w,— (n+ 2% /m> 2V,.
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I~

FIG. 1. Dependence of
Mz, on inverse magnetic
field.

Integrating over «, and k,, we obtain
1 1 3N 2
i 4 (7.9)

- =2 n
Mz, m 4 g [U-o'("*'%)ﬁzb/me

and
2

Vfl
2; (o - o+ DB% /Mm% (7.10)

1 1 3N
Mxx h m 4“"3)/2
The computed points in Fig. 1 are obtained from

Eq. (7.10).
Oscillations in the effective mass occur because

as the magnetic field decreases, additional Landau
levels cross the Fermi surface. This increases
substantially the number of states contributing to
M;l. As seen in Fig. 1, these oscillations are pe-

riodic in B,

The above results were obtained for the situation
when only the first few broadened Landau levels
contributed. At more moderate magnetic fields
higher Landau levels become important and most of

the contributions to M,, come from terms for which

the integral in Eq. (7.4) has the asymptotic expan-
1T
sion
ngs: 5 1
(- 1)"sin[n(2¢ — sin2¢) + i7], N = &1 cos?,

’

(rsing)Z(nNn)1*
(7.11)

In this regime contributions from adjacent Landau

levels are comparable and the oscillations decrease
in amplitude and broaden as the magnetic field de-

creases. In this regime additional oscillations

appear in M. resulting from the term

= ,
10 ]
]
]
9}
sl = 2.598-Lk s
X = 259842 i
m ]
e ]
f2 7t :
e ., 1
R / |
—~ 6} ! 1
,,,lv: : ]
T ' 1
~ [} []
{ Sk ; :
: : ’ :
df of n ! !
[} : [}
{ ! |
3 ! : ]
] ! !
" [] 0
! !
- ]
2 ! " Circles indicote computed points.
H '.' Dashed lines ore estimates of un-
- \d'f computed portions of the curve.
0 1 ] ] 1 L 1 1 L ] 1 L 1 1 ]
[o] | 2 3 4 5 6 7 8 9 10 B 12 13 14
X ——

sin®[n(2¢ - sin2¢) +3 7] . (7.12)
2.2
1 o i) = (24 %) ﬁ"? + A
M,
€, (k)
b
m
€iky)
B2
m
|
| |
_alky) Lo
€r-2\%, | | |
I | |
| I |
] 1 ]
Mo Mk T Py
Jem  Jem J/2m V2m
FIG. 2. Energy of a free electron in a magnetic field

as a function of &,.
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This oscillatory behavior is generally expected to
be of smaller amplitude and is related to the peri-
odic variation in the level broadening of magnetic
energy levels first discussed by Pippard. 18

We now estimate the finite-wavelength conductivity
coefficients important in magnetoacoustics and .
consider 0.} (g,, w) [Eq. (6.10)] which for our ap-
proximation is

) et (Na)?
oxx(qz, w) == 'E ﬁZ

V,cosk, Na
otz 1+ 47[ (g, /mk, — w] °
(7.13)

0
X On
nkpk,0

We change the sum over «,k,%, into an integration
and let k,Na=0, k,Na=¢, and k,=ks&:

3 Vv,
Oxix(qz; (‘)) ==0p 2(6772)2 /3 Z hzb"/m
n

" /'; d6 d g dt cosh
1+i(g, AE - wr)

(7.14)

The sum and integration are over occupied states.
The symbols are

nk T et 20\ M2
B ()

We examine the real part of ol (q,, w) for the
situation g,A > 1, where the denominator has a
strong minimum at {;=w7t/g,A. For the real part
of q}x(q,, w), the reciprocal denominator is treated
as Dirac delta-like function of constant area /g, A
centered at &,:

L )= m g S L T
Reoxx(qz; U)_ 0o 2(—6?53_/3qu

v, !
x z? mff:e d6 d ¢ cosb
° (7.15)

For metals, {,<1. Thus, the important value of
k, is k,=0.

Here, as in the estimate of M,,, contributions to
the sum come only from partially filled bands. Un-

like the previous estimate which included a sum

+ %

o(7; mj, ko) =it /2 ilkgs 2nj/a3)z2 exp[- im(xy N:z + ZHA)]

msz =0
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over different values of %,, here the only important
value of 2, is £,=0. Further, the only important
Landau level is the one for which €(r, k,, 0) = p,. For
the case when the ratio of the broadening to the
Landau level spacing is small, all bands (at %,=0)
except the one at the Fermi surface are fully oc-
cupied. Hence

3 128\ v,
JReo'xlx(qz: w), = Ui Og <—__8'>

g8 “\or) W m P
(7.16)

where 7 is the value of the Landau level at the
Fermi surface. The quantity B; is a number
between 0 and 1 and is dependent on the position

of the Fermi surface. The amplitude of Reo, is
proportional to the ratio V;/(%%b/m) of the broad-
ening as given by perturbation theory to the Landau
level spacing. The factor 370, /4q,A is the ampli-
tude of the semiclassical expression Reo,G z°
evaluated in the limit of large qA. The important
point is that the amplitude of Reo,, is a direct mea-
sure of the width of the broadened band. Further-
more, since the effect occurs only for values of
magnetic field such that the Fermi level falls within
the broadened band, increments in the conductivity
that are periodic in B! will occur. For Doppler-
shifted cyclotron resonance experiments, this effect
should occur beyond the absorbtion edge. These
increments in the conductivity will manifest them-
selves as periodic changes in the sound-wave at-
tenuation,
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APPENDIX A

In this Appendix we construct the representations
of the MTO. Using the notation of Sec. II we con-
sider an (s/N)xN;N,-fold degenerate level of the
empty-lattice Hamiltonian, where

1 [, eA )\ . N
—(p—g—“) o(T; njx, o)

2m c
2
= [(n+%) % +2E:; (Kz+621—:' j) ]qb('r; njx, ko) . (A1)

The eigenfunctions ¢(T; nj), ko) are symmetrized
eigenfunctions of the commuting set of magnetic
translation operators

S

2 2
L nm)x vn<Kx+21rsc/Na1 .

yom ts) wa

N
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(A3)

with
1 Naz/s bllz 172 1g 2 1/2
v,,(y)=5 (—2‘,%7— 77z)  exp(=zby") H, (') ,
x=0,1, 2..., s-1, and j is an integer varying from plus to minus infinity. The functions ¢(¥; njx, ko)

constitute a complete orthonormal set over the periodicity domain .
Matrix representations of the MTO are obtained by requiring the functions ¢(¥; njr, ko) to form a basis

for the matrices:

T(ﬁﬂ) ¢ (T; njr, ko) = 2

ol N Ry

| ,c;E;.Epw " (Rn) = fn a’r ¢*(?; nj)tl,-l?’ol) T(ﬁ‘n) ¢(-f’ nj, -EU) 5k’z,nz ’

or

Lo osepzpin 2 (Ra) = Oz 832 oo (Ry)

r%, (R, is given by Eq. (2.4). It is demonstrable
that the matrix I'* (R,) with elements I'%, (R,) is a
representation of the MTO.'? The matrices I'*(R,)
are irreducible.

Consider next the set of matricies

D ={T*R,), T*R,), ..., TRy wpwy)} - (A7)

The N,N,N;/N? different sets of DF obtained by vary-
ing ¥ over its designated range constitute all the in-
equivalent irreducible representations of the MTO.'?
The matrix elements satisfy the orthognality rela-
tion'?

. (S i = N;NpN,
% ¥4 R, TR g (Rn)=-3-ﬁ2——3- B2, 20,0+ Ogrgres
(A8)

APPENDIX B

In this Appendix, we demonstrate that the eigen-
values of 3C, are independent of ¢. Consider the
matrix element

(n'&'0’|3Cq |nko) = j;zdezl)*(f; n'%'0’) 3¢ o ¥(T; nko)
= [ d*x[1(R,) 9(F, ' &'0")]*

X 36 [T(R,) 9(F; ko), (B1)
where we have used the fact that the MTO are uni-
tary. The requirement that the functions (T, nko
form a basis for the irreducible representations of
7(R,) [Eq. (2.3)] leads to

njx {my,my

- > Lt
Ty AT RURY R,) ¢(r, njx ’KIU')éx'zkz ’

(A4)
(A5)
(A6)
|
(n'k'c"| 3¢, | nko)
=Z I‘E""o'*(ﬁn) Fs"o
oottt
x (R)(n'k'a"""|5C|nka"y .  (B2)

Summing both sides of Eq. (B2) over all values of
R, and using Eq. (A8), we obtain

(n'7'0’|3C| nko) =630 3640,

x L T (n' Ko |3Co| nika’ ")
N 0"
(B3)
Thus, the matrix element is dependent on o.

APPENDIX C

In this Appendix we outline a formal prescription
for finding the eigenvalues of 3¢, We assume the
periodic potential possesses orthorhombic symme-
try. One of the primitive lattice vectors is in the
direction of magnetic field 3, || 2o/l b. We write

WF)= 20 Cup (K, 0) ¢(T; nj), ko) , (c1)

njrko

where (T) is taken to be an eigenfunction of 3¢, and
(7, njr, o) is an empty-lattice eigenfunction (see
Appendix A). Inserting Eq. (B1) into Schriddinger’s
equation JC(T) = €(T) leads to

3 - N i2 A
E %E le.mz,j‘ e lmykyaz-moky@y) N /s 120 my /s fn'n(mly ma) 5y maN (modulo-s)
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Py P 27§ -
+|:(n+%)7 +% Kx+a_: - 5n’néj'j(s).'h cy:/k("» 0)=0, (CZ)
where we have Fourier analyzed the periodic potential. In Eq. (C2)
2 2 27(§' =4
Vingymagit 5= A'lf d®x V(x, y, ) exp [—z( 7;"’11 PN . ﬂ(; 1) z)] (Cc3)
A 1 3
and
+ -2 _ N -
o n(my, my) =f dt exp <%1”1,%§-> Ve [b 1/2<£ Ly agbl/z);, v, (b %) (cq)
- 2
where v, is defined by equation (A3). f,.,(my, m,) can be evaluated in closed form,
2m\ 12y 12 /e an? ap\ V4] rmny op N\ /2
Jrn (my, m3) = <-2-'7> (n_.’> o -i2T myma¥ [7711(;1-) +imy (a—;) ] (T)
TN( 208 20N wal™N( 28 24
X exp [-2 3 (m, . +ms az)] Ly s my P +my 2 )|’ (C5)

where L?"" is an associated Laguerre polynominal,’®
In Eq. (C3) modulo s means that whenever m,N is
greater than s, the selection rule is dy.y,mov - s 5
where 7 is an integer chosen so that m,N-wis is less
than s.

Equation (C2) provides us with a secular equation

for €. The quantity in square brackets is indepen-
dent of 0, and for a given value of ¥ and any o, the
secular equation yields an infinite number of eigen-
values. The eigenvalues, denoted by €(x, k) are, for
a given X, numbered in order of increasing energy.
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